بازشناسی برخط حروف مجزای دستنویس فارسی بر اساس تشخیص گروه بدنه اصلی با استفاده از ماشین بردار پشتیبان
Authors
Abstract:
In this paper a new method for the online recognition of handwritten Persian characters has been proposed which uses a set of simple features and Support Vector Machine (SVM) as a classifier. The task of preprocessing allows us to equalize feature vectors from different characters. This algorithm is implemented in two steps. In the first step, input character is classified into one of eighteen groups of main strokes of characters and in the second step, position, number, and the shape of sub-strokes determine character type. For example to recognize the character ‘ت’, in the first step the character will be classified to group of letters ‘ب، پ، ت، ث’ based on main stroke shape and then classification is done using information of the sub-strokes. In the final step, post processing, we rectify previous step results employing unmatched conditions between main stroke and sub-strokes. Consider a main stroke «ل» with a point at the top of that in this situation post processing step will change result to letter «ن». The experimental results -which is based on Online-TMU database- show that the recognition rate of the main strokes of the characters is 94% which reaches to 98% using the information of sub-strokes.
similar resources
روشی کاربردی برای بازشناسی برخط حروف مجزای دستنویس فارسی با استفاده همزمان از دانش مربوط به بدنه اصلی و ریزحرکات
در این مقاله، روشی برای بازشناسی برخط حروف مجزای دستنویس فارسی ارایه میشود. در روش پیشنهادی برای بازشناسی حروف مجزای دستنویس فارسی، از دانش مربوط به بدنه اصلی و ریزحرکات بهطور همزمان و بهمنظور اعتبار بیشتر تعیین کلاس خروجی استفاده شدهاست. در این تحقیق حروف مجزای دستنویس فارسی بر اساس تشابه بدنه اصلی در 18، و بر اساس تشابه ریزحرکات در 11 گروه، گروهبندی میشوند. با توجه به روش پیشنهادی ار...
full textبازشناسی حروف مجزای برخط فارسی
در این پایان نامه، روشی برای بازشناسی برخط حروف مجزای دست نویس فارسی ارایه می شود. در روش پیشنهادی برای بازشناسی حروف مجزای دست نویس فارسی، از دانش مربوط به بدنه اصلی و ریزحرکات به طور همزمان استفاده شده است. در این تحقیق حروف مجزای دست نویس فارسی بر اساس تشابه بدنه اصلی در 18، و بر اساس تشابه ریزحرکات در 11 گروه، گروه بندی می شوند. برای مثال، سیستم برای حرف «چ»، بدنه اصلی و ریزحرکات را شناسایی...
15 صفحه اولبازشناسی حروف برخط فارسی با استفاده از ویژگیهای ساختاری
در این مقاله گروهبندی و بازشناسی حروف تنهای فارسی که به صورت برخط نوشته شده باشند، بر اساس ویژگیهای ساختاری آنها ارائه شده است. حروف بر اساس شکل و ساختار نوشتاری بدنه اصلی آنها به 9 گروه تقسیم میشوند. پس از استخراج ویژگیها، گروهبندی با استفاده از درخت تصمیم انجام میشود. بازشناسی نهایی حروف با توجه به ساختار اجزای کوچک آنها در هر گروه صورت میپذیرد. با توجه به این که در این مقاله از روش...
full textبازشناسی حروف برخط فارسی با استفاده از ویژگیهای ساختاری
در این مقاله گروهبندی و بازشناسی حروف تنهای فارسی که به صورت برخط نوشته شده باشند، بر اساس ویژگیهای ساختاری آنها ارائه شده است. حروف بر اساس شکل و ساختار نوشتاری بدنه اصلی آنها به 9 گروه تقسیم میشوند. پس از استخراج ویژگیها، گروهبندی با استفاده از درخت تصمیم انجام میشود. بازشناسی نهایی حروف با توجه به ساختار اجزای کوچک آنها در هر گروه صورت میپذیرد. با توجه به این که در این مقاله از روش...
full textروشی کاربردی برای بازشناسی برخط حروف مجزای دست نویس فارسی با استفاده همزمان از دانش مربوط به بدنه اصلی و ریزحرکات
در این مقاله، روشی برای بازشناسی برخط حروف مجزای دست نویس فارسی ارایه می شود. در روش پیشنهادی برای بازشناسی حروف مجزای دست نویس فارسی، از دانش مربوط به بدنه اصلی و ریزحرکات به طور همزمان و به منظور اعتبار بیشتر تعیین کلاس خروجی استفاده شده است. در این تحقیق حروف مجزای دست نویس فارسی بر اساس تشابه بدنه اصلی در 18، و بر اساس تشابه ریزحرکات در 11 گروه، گروه بندی می شوند. با توجه به روش پیشنهادی ار...
full textبازشناسی قلم های فارسی با استفاده از ماشین بردار پشتیبان
هدف از این پژوهش، بررسی عمل بازشناسی قلم به منظور تشخیص قلم از روی تصاویر اسکن شده از سند ها می باشد. بازشناسی قلم یکی از بخشهای مهمِ سامانه ocr است و هدف از بازشناسی قلم تعیین نوع قلم استفاده شده در متن تایپی است. در این پایان نامه با ترکیب ویژگی های مختلف و استفاده از طبقه بند svm سعی داریم نتایج بازشناسی قلم را بهبود ببخشیم. در این پژوهش از روش های فیلتر گابور، تبدیل موجک، فرکتال چندبُعدی وsr...
My Resources
Journal title
volume 9 issue 1
pages 59- 68
publication date 2012-09
By following a journal you will be notified via email when a new issue of this journal is published.
No Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023